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Abstract-This paper presents a comprehensive framework lor tracking coarse 

multiple camera coordinates. It demonstrates the feasibility of an end-to-end 
person tracking system using a unique combination 01 motion analysis on 30 

z(R#,F) 2 3 x , + 3 x 2 C  ' 3X1 + (G ~ 2Atr(s1))X2' human models from sequences of synchronized monocular grayscale images in 

geometw in different camera Coordinates and other existing techniques in motion 
detection, segmentation, and pattem recognition. The system starts with tracking 
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no longer have a good view of the subject of interest, tracking will be switched to 
another camera which provides a better view and requires the least switching lo 
continue tracking. The nonrigidity of the human body is addressed by matching 
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paints of the middle line of the human image. spatially eind temporally, using 
Bayesian ClaSSifiCatiOn schemes. Multivariate normal distributionS are employed to 
model class-conditional densities of the features for tracking, such as iacatian, 
intensity, and geometric features. Limited degrees of Occlusion are tolerated within 
the system. Experimental r~sults using a prototype system are presented and the 
performancs of the algorithm is evaluated to demonstrate its feasibility for real time 
appiic81ions. 

Index Term%-Tracking, human modeling, motion estimation, multiple 
perspectives. Bayesian ciassification, end-toad vision systems. 

+ 
1 INTRODUCTION 
T R A C K I N G ~ ~ ~ ~ ~  motion is of interest in numerous applications 
such as surveillance, analysis of athletic performance, and 
content-based management of digital image databases. Recently, 
growing interest has concentrated upon tracking humans using 
distributed monocular camera systems to extend the limitcd 
viewing angle of a single fixed camera [1], [2], [3]. In such a 
setup, the cameras are arranged to cover a monitored area with 
overlapping vision fields to ensure a smooth switching among 
cameras during tracking. We present a comprehensive frame- 
work for automatically tracking coarse human models across 
multiple camera coordinates and demonstrate the feasibility of 
an end-to-end pcrson tracking system using a unique combina- 
tion of motion analysis on 3D geometry in different camera 
coordinates with existing techniques in motion dctection, 
segmentation, and pattern recognition The nonrigidity of the 
human body is addressed by matching points of the middle 
line of the human image, spatially and temporally, using 
Bayesian classification schemes. The key to successful tracking 
in the proposed work relies on our unique method of 3D 
motion prediction and estimation from different perspectives. 
Experimental studies using a three-camera prototype system 
show its efficiency in computation and potential for real time 
applications. 

The earliest work in this area is, perhaps, by Sato et al. [1]. They 
considered the moving human image as a combination of various 
blobs. All distributed cameras were calibrated in the world 
coordinate system, which corresponds to a CAD model of the 
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indoor environment. The blobs of body parts were matched 
through image sequences using the area, average brightness, and 
rough 3D position in the world coordinates. Kelly et al. 121 adopted 
a similar strategy 111 to construct a 3D environmental model using 
the voxel feature. The depth information contained in the voxel is 
obtained using height estimation. Moving humans were tracked as 
a group of these vaxcls from the "best" angle of the viewing 
system. Neither of these methods considered the particular body 
structure and shape characteristics of a human being. In addition, 
both need to model the environment in 3D and establish a world 
coordinate. They are computationally expensive and do not adapt 
to changes in dynamic environments. In our work, only neighbor- 
ing cameras are calibrated to their relative coordinates and 
background images are updated periodically to capture the 
changes in thc environment. Based on studies on human geometric 
structures, we distinguish moving human figures from other 
nonhuman objects by modeling the human body. Matching the 
subject image between consecutive frames involves motion 
estimation in a spatial-temporal domain under a Bayesian 
classification scheme. 

Tracking is done from a single camera view until the system 
predicts that the active camera soon will no longer have a good 
view of the subject of interest. Tracking then switches to the 
camera that will provide a better vicw and require the least 
switching to continue tracking. Thus, the tracking paradigm 
consists of three basic modules: Singlc View Tracking (SVT), 
Multiple View Transition Tracking (MVTT), and Automatic 
Camera Switching (ACS). 

2 SINGLE VIEW TRACKING 
Tracking from a single view includes two major components: 
preprocessing and feature correspondence between consecutive 
frames. Three stages of preprocessing are performed: 

I .  
2. 

3. 

Segmenting the moving objects from the still background, 
Distinguishing human subjects from other segmented 
nonbackground objects, and 
Extracting features from the segmented human subjects. 

Feature correspondence is established by applying a Bayesian 
classificr to locate the most likely match of the subject image in the 
next frame. The feature vector consists of location, intensity, and 
geometric information, Multivariate Gaussian models are formu- 
lated to parameterize the class conditional probability density of 
the feature vector. Thus, tracking is reduced to finding the 
minimum sum of the corresponding Makulonobis distances of the 
feature given the estimated feature parameters, 

2.1 Preprocessing 
Preprocessing is critical to the success of high-level processing 
stages. If a moving object is missed at the preprocessing stage, the 
system will be unable to track this particular object at later stages. 
The major task of preprocessing is to segment human images from 
the rest of the image objects. To the best of our knowledge, there 
are still no satisfying and robust general solutions. Here, we apply 
efficient standard motion detection and segmentation techniques 
to take the advantage of the fact that the viewing system is still. 
More robust and complicated segmentation schemes could be 
applied if computational cost is not a consideration. The key to the 
proposed motion segmentation is to dynamically recover the 
background by grouping regions of still pixels in time. Then, we 
detected moving blobs by differencing and focused on the upper 
half body of the blobs using a coarse 2D human model. This 
procedure is followed by human segmentation, where moment 
invariants are uscd as the shape feature for distinguishing between 

human and nonhuman moving objects based on Principal 
Component Analysis (PCA). More details are found in [4], [5]. 

Due to their robustness for matching in different views, N 
points belonging to the middle line of the upper body are selected 
and aggregated as the feature to track. The line segment is 
extracted by finding the middle points of the blobs. Using multiple 
feature points instead of a single point [6] makes matching the 
subject image more reliable. We have elected to use six points 
based on the trade-off between the need to use fewer points to 
reduce computation cost and the need to use more points due to 
the nonrigidity of moving human figures. To ensure the robustness 
of the feature matching, we incorporate three types of features: 
location, intensity, and geometry. The location feature is defined as 
the horizontal and vertical position of the feature points: 
XI = [(ult, m i ) ,  (u2,. u2*) ,  . , . , (wt, u.yt)lT, where t is the time index. 
We define the intensity feature as Y I  = [ylt, yzt,. . . , y.wjT, in which 
ynZt is the average intensity of the neighborhood of the mth feature 
points. Another type of feature is the image height ratio between 
consecutive frames (the height of a candidate image in the current 
frame divided by the subject height in the previous frame) as the 
geometric feature (gJ, where the image height is computed as the 
height of the upper body using a coarse 2D geometric human 
model at the segmentation stage. This feature is essential for 
tracking in narrow corridor scenes where the location and intensity 
features most likely fail. 

2.2 Feature Correspondence 
Tracking a subject between adjacent frames can be achieved by 
finding the closest match of features in the next frame based on 
constraints such as continuous position, instantaneous velocity, 
similar intensity, etc. We apply a Bayesian classifier to locate the 
most likely match of the subject image in the next frame. For 
simplicity of computation without loss of generality, we assume 
that a prior probability function P(Q) is uniformly distributed, 
where 0 is the feature parameters of the subject to track. In a 
multivariate Gaussian model, it represents the mean and covar- 
iance of the feature vector Z L  = [Xt, Y,, gl], where X,, Yt, and gt are 
assumed to be independent of each other since they are different 
types of features. So, we define 

where w,,, wI, and are the the weights associated with p.(.), 
pu( . ) ,  and py(.). Based on Bayes theory, the closest match is found 
by searching the minimum of D, = - logp(ZtlO). The weights for 
each feature are computed based an the l/w, : l /w,  : l /w, = 

?I+, = 1 during training. We assume that pz(.), pv(.), and pp(.) are 
normally distributed to reduce the computational cost. 

Since the subject of interest has a nonrigid form, we assume that 
one feature point is independent of another. Under such assump- 
tions, the mean vector of pz(.) U. = X, and the covariance C, is a 

diagonal matrix with the mth component of a;,,,. Therefore, we 
have 

[-logp,(XtI0,)1 : [-logp,(YilQ,)l : I-1ogp,(gtlQ,)1 and w, + wy + 

The estimation of (ti,,,, I%nL) is computed using perspective 
projection and the assumption that velocity direction for three 
consecutive frames is unchanged 151, 
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Motion Detection 
& Segmentation 

Coarse Human Feature 
- Segmentation Extraction 

Fig. 1. The basic procedure of transition tracking 

where vt = l/gt, and TO = 1. We define U=,,,, = A&, so that u3:,"& is 
proportional to the scale of the image height h,, where A, is only a 
scaling factor in order to obtain a universal scaling for the 
Mnhnlonobis distances for different types of features. The definition 
and estimation for intensity p,(.j and geometric features are similar 
and are given in 151. 

Finally, we have 

= w A t  + w$,t + wJ)g,t 

These U,,,, U,,!, and ])UIL are Mnhalonobis distances for each 
individual feature. The most likely match should satisfy two 
conditions: Dt must be 1) less than certain threshold T, and 2) the 
minimum value among the candidates. Although this threshold is 
currently preset, its value could be adapted according to different 
tracking environments. 

In the above paradigm, if the subject of interest is occluded by 
another subject, the system might select the occluding subject as 
the best match, even though the intensity or geometry features 
might not agree. If we do not "memorize" the correct features in 
the previous frame, the target might be switched after occlusion. In 
such cases, we use estimated features instead of the ones computed 
directly from the current frame. Details of the computation are 
addressed in [5]. 

3 MULTIPLE VIEW TRANSITION TRACKING 
In our system, tracking continues in the single view (SVT) mode 
until the active camera no longer has a good view of the subject of 
interest, when tracking switches to a video stream captured from 
another nearby camera. At that point, the system enters the mode 
of Multiple View Transition Tracking (MVTT). Fig, 1 shows the 
overall diagram of the module. The double-framed rectangular 
boxes represent the processes which differ from SVT. In MVTT, the 
backing feature in consecutive frames mnst be adjusted to the 

same spatial coordinates. Preprocessing starts with camera 
calibration, which measures the intrinsic and extrinsic parameters 
of the system cameras by using the methods in [7] and [E], 
respectively. These parameters are used to establish the relation- 
ships between various camera coordinates. Then, we go through 
the same procedure as in the preprocessing in the SVT module. 
The last step before feature correspondence is to project the 
location feature into the same camera coordinates. 

We again apply multivariate Gaussian models to represent the 
class-conditional distributions of the feature p(Z,IO),  including 
only location and intensity information, since there is no longer a 
valid criteria for estimating geometric features from different 
camera views without knowing the relative distances between the 
subject and the viewing cameras. However, feature correspon- 
dence using the location feature differs significantly. 

3.1 
Tracking across different perspectives in time is equivalent to 
matching feature points from I ,  and Jl,., ,  where IL is the frame 
imaged by camera Cj at time t and Jt+, is the frame imaged by 
camera C, at time t + 1. It involves both spatial and temporal 
motion estimation. Typical methods, like Kalman filtering, could 
be used in this case. To reduce computational cost, we apply a 
simpler prediction and estimation method instead. Two basic 
models are addressed: the class-conditional distribution for spatial 
matching p.~(X&l j and that for spatial-temporal matching, 
ZJzz(xt/%2). 

Tracking Based on the Location Feature 

3.1.1 Spatial Matching 
Spatial matching is based on the correspondence between a 2D 
point and its corresponding epipolar line. To establish correspon- 
deuce between frames imaged by camera C, and camera C, at time 
t, the multivariate Gaussian model for position is modified from 
(1) to 

where is the distance between the mth feature point (unit, U,",) 

and its expected 2D epipolar line r~,,,~a + h,,,tg + cillL = 0, all in thc 
view of C,. The 2D epipolar line is projected from the point 
(ttv,2t,&,atj in the view of C,, and t is the time index. Since the 
distance between an image point (mo/zn,yo/znj and a 2D line KC + 
bg+ e = 0 is 
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we define as = A s l l / , , ' ~ ,  with A,1 again as a 
scaling factor. 

3.1.2 Spatial-Temporal Matching 
Spatial-temporal matching involves estimating the projection of a 
3D point in the view of camera i at time t (denoted as (iLt,Uit)), 
given ( B ; ( t - l ) , , f i + l ) ) ,  taj(t.~),~,[t.l))), and (%t,D3t)). Using the 
pinhole projection model, we have 

field of the current camera. Image height prediction is,, in a sense, 
an estimation of the subject's depth using the image's positions in 
previous frames. Tracking confidence is a measure of robust 
matching between consecutive frames. It could be lowered due to 
poor segmentation, occlusion, and ambiguity in the clothing and 
size of the subject images. 

In each process, we assume constant velocity of the subject over 
three consecutive frames. This assumption is reasonable given the 
small time period for capturing three frames. The velocity 
information is refined at each step once the uncertainty of 
matching is resolved. 

Location prediction is based on the perspective projection and and 

where R,, and T;; is the rotational matrix and translational vector 
between the camera coordinate i and j ,  a1 and a2 are scaling 
factors, 0, and are the depth ratio of the point at times t - 1 and 
t, in C: and C,, which can be calculated using the height ratio of the 
subject images between adjacent frames. Finally, we arrive at: 

where a = azJcu,, U = D~ii,,  - 2L,(t+l), V = ~ D , L  ~ D,,ct-l), and  ti is 
the kth row and lth column element of 4;. When occlusion is 
detected by thresholding, similar to the module of SVT, only vmt is 
modified. More details could be found in [ 5 ] .  

4 AUTOMATIC CAMERA SWITCHING 

. .  . .  
constant velocity 151. Finally, we have UL = U - ,  + A u / ( 2 ~ ~ - 1  - 1) 
and wt = vtti + A v / ( 2 ~ ~ + ~  ~ 1) with 

(nu, AV) = (ut-, - ~ ( - 2 ~ u t - 1  - ut-z) 

To initialize the prediction process, we assume that q = 1 and 
Au = AV = 0. If (ut+,) is out of the viewing boundaries of the 
current camera, camera switching is immediate. 

4.1.2 lrnage Height Prediction 
Image height prediction uses the height of the upper body image 
as a coarse reflection of the subject's depth in the camera 
coordinate. Compared to width, the height of the subject image 
more truthfully reflects the distance between the subject and the 
active camera. For example, a person facing toward the viewing 
camera will be the same height as he turns 90 degrees away, but a 
different width. Using the definition of rL, along with the constant 
velocity assumption, the height of the subject's upper body io the 
tth frame is 

We choose to track the subject of interest in one video stream at 
one time instant to reduce the computational cost and automati- 
cally switch among cameras to keep the subject in view. Automatic 
camera switchiny (ACS) consists of two steps: prediction and 

If ht becomes too small, indicating that the subject is moving too far 
from the viewing camera, then immediate camera switching is 
necessary, 

- . .  
optimal camera selection. The prediction process reports when 4.1.3 ~ ~ ~ ~ k i ~ ~  Confidence 

Tracking confidence is derived from D, since it is the key to finding 
the most likely match between two consecutive frames. Two types 
of confidence are considered the absolute confidence, ACF,, and 

camera switching is necessary, which may happen in three cases: 

of the 1 ,  when the subject image appears to be moving 
viewine boundaries of the current camera. 

2.  
3. 

when the subject moves too far away, and 
when the subject becomes occluded by another subject for 
more than two frames. 

In these situations, switching to another camera may result in a 
more continuous or better view of the subject. The selection of 
"optimal" camera is considered in terms of three aspects: 

1. 

2. 
3. 

The candidate camera must be able to image the subject in 
the future, 
Spatial matching between different cameras is robust, and 
The candidate camera will contain the subject image over 
the longest number of frames, given the subject's current 
position and velocity. 

The third requirement minimizes the amount of camera switching 
during tracking. 

4.1 Prediction 
We address three types of prediction for the subject image: location 
prediction, height prediction, and tracking confidence measnre- 
ment. Location prediction estimates the location of the subject 
image in the next frame and judges if it will be within the vision 

the relative confidence, RCFt, where t is the time index. ACF, is 
defined as ACF, = T / D ,  with T as a threshold addressed before. 
As D, decreases, ACE; increases proportionally, which agrees with 
the decision criterion that the less the Mahalunobis distance is, the 
more robust the match is. RCF, is a measure of the relative 
tracking confidence among multiple candidates for matching. It is 
defined as RCFt = Dt(I)/DL(O), with 

Q(0) <DL(I) 5 . . . 5 D t ( k ) .  . . 5 & ( I < ) ,  

k as the index of subject candidates, and li as the number of 
subject candidates. A confident match should have both high ACF, 
and RCF,. If only one subject exists, ACFt is the only quantitative 
measure for tracking quality. The overall confidence is defined as 
CF, = min[ACFf, RCF,]. A small CFt may be caused by occlusion 
of subject images, poor segmentation, ambiguity between sizes and 
intensity values of subject images, etc. In such situations, changing 
the viewing angle of the camera may help to solve some of these 
problems. The definition of tracking confidence also applies to 
each individual feature, except that the threshold T has been 
changed to T,, T,, and Ti,, respectively. 
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(d) (e) (f) 

Fig. 2. Tracking a subject around an indoor corner: (a) C,.t = 1, (b) C,,,t = 2, (c) C,,t = 3, (d) Cl , t  = 2, (e) C,,t = 3, (f) C2,t = 4. 

4.2 Optimal Camera Selection 
We select the optimal camera based on matching robushless and 

prediction of the subject image position given its current position 

and velocity. The process of selecting the optimal camera involves 

two steps, matching evaluation and frame number calculation 

0 
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Fig 3 Tracking confidence measurements m SVT 
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4.2.7 Matching Evaluation 
Matching evaluation selects the optimal camera with high tracking 
confidence, i.e., with CF, above the corresponding threshold. 

4.2.2 Frame Number Calculation 
Frame number calculation is used to minimize the amount of 
camera switching during tracking to reduce the computational 
cost. If more than one camera has a robust match, we use the 
current position and velocity of the subject to estimate the number 
of frames until the subject will move out of the view of the 
candidate camera or will move too far from the camera to be 
viewed well. We choose the camera that will image the subject over 
the most frames as the optimal camera. The detailed derivation of 
frame number calculation is addressed in 151. 

5 EXPERIMENTAL STUDIES 

corner, and a room. Complex scenes are considered to be 
combinations of these three typical scenes. 

In the setup, we use three ULTRAK K-500 1/2" solid state b/w 
CCD cameras mounted with Computar H612FI wide angle lenses. 
A Matrox MAGIC frame grabber installed in a Compaq 486 PC 
grabs and digitizes 512 x 480 pixel images from the cameras. All 
images are processed by a RISC workstation running AIX 
(60 MHZ). The images are grabbed from the three cameras in 
the order of C&'IC,COC~C,. . . . The time interval between 
consecutive frames taken by the same camera is about 0.3 
seconds, while the interval between consecutive frames taken by 
adjacent cameras (e.g., C, and C~+I )  is about 0.1 second. The 
scaling factors for U are set in such a way that we expect a valid 
match with Dt, D,,t, D, t ,  and D , ,  to be around 1. The thresholds 
are set as T = T, = Ty = T, = 2 and the weights are calculated as 
U?, = wg = 0.45 and wy = 0.1. These parameters were obtained 
from training on testing data. It takes about 0.3 seconds for the 
NSC workstation to process the tracking algorithm between 
consecutive frames. 5.1 A Prototype System 

We used seven data sets captured in a cluttered room, long 

Partially overlapping fields of view, linked to a synchronization elevators, with up to six people walking in various directions, 
device, a digitizer, and a computer to handle all control and and with still people in the background. Fig. 2 shows an example 
processing. We are interested in tracking moving humans in of tracking a subject in a corridor corner that involves all three 
various indoor scenes, such as a long narrow corridor, an indoor basic modules: SVT, MVTT, and ACS. The first switching 

Our prototwe system consists Of three with corridors, corridor corners, a building lobby, and building 
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(Cl - CO, 1 = 2) happens when the subject moves too far aud the 
second switching (CO i C2,t = 3) is invoked when the subject is 
about to move out of the right boundary. 

5.2 Performance Evaluation 
Next, the system performance is evaluated 1101 on about two hours 
of video (about 1.5 hours for SVT and 0.5 hours for MVTT) in three 
types of indoor environments. We use tracking confidence CFt as a 
measure of the robustness of our algorithm (note only CFt 2 2 is 
considered a robust match from the previous description). We plot 
tracking confidence in both SVT and MVTT modules using all the 
features as  well as each individual feature, as shown in Figs. 3 and 
4, where the horizontal axis is the instances of feature correspon- 
dence and the vertical axis is the corresponding tracking 
confidence CF,s. To have a better view of the low C ~ S ,  we clip 
any CFt 2 10 to be 10. The solid lines in each figure are the 
threshold of 2. Both figures show that using three types of features 
achieves a much higher tracking confidence than using any 
individual feature, and the intensity feature is the least robust. 
Thus, its weight is set smaller to achieve better tracking. More 
robust features could be substituted by simply following the 
defined framework. MVTT tracking confidences are lower than 
SVT due to the increased complexity of the algorithm and 
matching ambiguities between a 2D point and its estimated 
epipolar line from multiple perspectives. 

Next, we evaluate the tracking algorithm by the tracking rate, 
defined as the percentage that the system tracks the right subject 
image. In SVT, we achieved a 98 percent rate of tracking using all 
the features. The rates of single feature tracking for location, 
intensity, and geometric features individually were 93.5 percent, 
80.0 percent, and 84.5 percent, respectively. In MVTT, we obtained 
a rate of 96 percent when using both features, and 95 pcrccnt and 
68 percent when using the location and intensity features 
individually. A match with high CF,, usually results in a correct 
match; wrong matches occur when the CF,, is below the threshold. 

Failure of the proposed tracking algorithm is usually due to 
occlusion, which not only makes the low-level processing more 
difficult in the first stage, but also increases the matching 
ambiguity of the feature correspondence. Although we have 
developed techniques to deal with the problem of occlusion at a 
certain level, it still remains a major obstacle to the tracking 
problem. Other factors that degrade pcrformance include reflec- 
tion on glass and metal surfaces and dramatic changes in scenes 
viewed through glass doors. All of these factors prevent the system 
from accurately segmenting the subject image from a still back- 
ground. MVTT tracking performance is less robust than SVT due 
to the uncertainty of the depth at the time of matching. Other 
factors which may deteriorate the algorithm performance are 
similarities in clothing to the background or in the distance 
between the subject and the viewing camera, which dcgrade thc 
contribution of the intensity and geometric features during 
matching. 

6 CONCLUSION 
We have developed a comprehensive framework for tracking 
coarse human models from sequences of synchronized monocular 
grayscale images in multiple camera coordinates. Our framework 
demonstratcs the feasibility of an End-to-end person tracking 
system that uses a unique combination of motion analysis on 3D 
geometry in multiple perspectives and existing techniques in 
motion detection, segmentation, and pattern recognition. Bayesian 
classification schemes associated with a general framework of 
motion analysis in a spatial-temporal domain are used for feature 
correspondence between consecutive frames under the same or 
different spatial coordinates. The performance of the algorithm has 

been evaluated from a prototype systcm in various types of indoor 
scenes and demonstrates the feasibility for real time applications. 
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